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The parameters which can be obtained from an unpolarized-neutron-diffraction investigation of an 
ordered magnetic structure are discussed in terms of the spin-density Patterson function. The effect of 
magnetic domains on the information available from a single-crystal experiment is considered and the 
treatment is extended to cover powder diffraction data. The symmetry of the spin-density Patterson 
function before and after domain averaging is described. 

1. Introduction 

It has been shown (Wilkinson, 1963, 1973) that a spin- 
density Patterson function may be computed from un- 
polarized-neutron diffraction data from a magnetic 
single crystal. The function has been used by Yessik 
(1968) in the establishment of the magnetic structure of 
Mn2P and by Forsyth, Johnson & Wilkinson (1970) to 
assist in the solution of the magnetic structure of vivianite 
Fea(PO4)2.8H20. 

The purpose of the present paper is to discuss in 
terms of this function the information which is avail- 
able from single-crystal or powder unpolarized-neutron 
diffraction experiments. The p r o b b m  has been partially 
tackled by Shirane (1959), who considered the informa- 
tion which could be obtained from powder diffraction 
data when the magnetic structure had a single spin axis. 
The present treatment is more general and applies to any 
magnetic structure and various diffraction situations. 
These will be considered individually. 

2. Single-crystal data 

2.1 Single-domain single crystal 
As indicated in an earlier paper (Wilkinson, 1968) 

the magnetic intensity data from a single magnetic do- 
main and a knowledge of the 'chemical' structure of a 
material in principle allow a direct determination of the 
magnetic structure. The information contained in the 
Patterson function can be extracted from the height 
and elongation of the Patterson peaks. This is devel- 
oped more fully below. 

Suppose there are N atoms in the magnetic unit cell 
with spins S ~ to S ~. The N 2 Patterson peak heights may 

be arranged in the symmetric matrix O in which each 
element qm, is the scalar product S m . S ~ 
Thus 

Q =  
S t S 1 S 1 S 2 S 1 SN 1 
S z S l S z i S 2 " '"  

*',, , 
S N S l S N. S N 

(The peaks with heights q,, are overlapped at the origin 
of the Patterson function where the peak height is 
IS'l 2 + IS'l '  + . . .  ISNI '~ .). 

The elongation of the peaks may be described by a 
'vector' array E in which the element gm, is a unit vector 
in the direction of the elongation of the peak of height 
q,,,. This unit vector is the bisector of the spin direc- 
tions S ~, and S". 

Thus 

/ell el2 .. .  ~IN t 
E =  {$2~ 322 i 

\ i . , <  "'" "" e . .  I " 

The elements of E may be used to determine the unit 
vectors gN. Consider any three spins S t, S J, S k for 
which the elements #-t j, ~-t~, ~-j~ are known. 

Then 

These equations may be solved for gt, ~j and ~k, e.g. 

l /~j .  ~jk)2+ (~,k. ~ S +  (~tj. ~,~)2_ 2(~,j. ~j~) @,~. ~j~) (~,j. ~,~) 

* Now at the Department of Physics, University of St. 
Andrews, Fife, Scotland. 

Knowing S~, SJ and :gk and the elements qij, qjk, qlk the 
values of [St[, IS J[ and IS k can be determined from ex- 
pressions of the type 
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1/ qiiq~k(ga . Sk) 
[S~I = l /  

The above expressions show that in principle it is pos- 
sible to solve the magnetic structure from the Patterson 
function for a single-domain single crystal. This is 
probably of academic interest, however, as single-do- 
main single-crystal experiments are rare, and in many 
cases the elongations ~ij are difficult to determine be- 
cause of partial overlap of the Patterson peaks. 

2.2 Multi-domain single co'stal 
When several equally populated magnetic domains 

occur within a single crystal the information available 
from an unpolarized-neutron diffraction experiment 
may be reduced. The effects of having several domains 
may be analysed in terms of the superposition of inten- 
sities in reciprocal space, or the superposition in real 
space of the Patterson peaks from each domain. The 
Patterson representation of the problem will be con- 
sidered here. 

The expression for a Patterson peak is computed 
from three-dimensional data is of the form 

Q'(u  ~" + x) = f ~ ( I x l ) S  ~ . S ' +  fz(Ixl )  (S ~ . ~) ( S ' .  ~) 

(Wilkinson, 1973), 

where fl(Ix]) and fz(lx]) are functions of the distance 
Ix] from the centre of the peak at vector distance u'"" 
from the origin. The term involving f~(Ixl) is spherically 
symmetric and governs the peak height [fz(0)=0], 
while the second term determines the peak elongation. 
The spins in a second magnetic domain (related to 
those of the first domain by the symmetry operators of 
the chemical space group of the material) will produce 
different magnetic intensities and consequently a dif- 
ferent Patterson function. The peak positions in the 
second distribution will, however, be identical with those 
of the first and peak overlap will therefore occur when 
the distributions are superposed. The termft([xi)S".  S" 
is the same for both domains, but the peak elongations 
will be in different directions. This shows that although 
the size of the moments S m and S" and the angle be- 
tween them may still be determined, some or all of the 
information may be lost concerning the angles between 
S m, S" and crystallographic directions. 

The above discussion of overlap can be put on a 
quantitative basis for the domains which occur in dif- 
ferent crystal systems. This is set out in Appendix 1. 

Although information may be lost from a particular 
peak as a result of overlap it is not necessarily lost from 
all peaks. Consider, for example, a hypothetical struc- 
ture which has a chemical space group P4 and has mag- 
netic atoms in the general equivalent positions x , y , z ;  
- y , x , z ;  y , - x , z ;  - x , - y , z .  Suppose that there are 
three magnetic structures for this material which exist 
at (say) different temperatures and these are shown in 
Fig. l(a). A and B have magnetic structures which are 
commensurate with the chemical cell, while structure 

C has one edge of the original cell doubled. The spin 
directions have been chosen to lie parallel to the cell 
edges in the plane of the diagram. The magnetic space 
groups of A, B and C are monoclinic P2, tetragonal 
P4 and monoclinic P2a2 respectively, and their'configu- 
rational' groups are tetragonal P4,(A), triclinic P I,(B) 
and monoclinic P2,(C). Their configurational sym- 
metries are shown in Fig. l(b). [The notation used to 
represent magnetic space groups is that given by Ope- 
chowski & Guccione (1965).] The 'configurational' 
group is derived from the magnetic space group by 
assigning to each magnetic atom a scalar quantity 
which is identical for two atoms only if they have spins 
of the same magnitude and direction. It is therefore an 
ordinary 'chemical' space group, but is not in general 
identical with the 'chemical' space group of the mater- 
ial. It may belong to the same or a lower-symmetry 
crystal system. 

The Patterson distributions for the domains shown 
in Fig. l(a) are illustrated in Fig. l(c). Elongated peaks 
are represented schematically by ellipses. Note that the 
origin peak for B is circular owing to the overlap of ellip- 
ses with major axes perpendicular. The height of the 
'origin' peak is four times that of the subsidiary peaks 
in each case. 

Since the material has chemical space group P4 
there will be a total of four magnetic domains which are 
energetically equivalent and should therefore exist in 
equal volumes in the crystal. These will all contribute 
to the diffracted intensities and the nett effect on the 
Patterson distribution will be to superpose four distri- 
butions of the type in Fig. l(c) each of which is relatively 
rotated by 90 ° . The result of this averaging procedure 
is shown in Fig. l(d). It can be seen that there are no 
elongations in the distribution for model A and there- 
fore nothing is known about the angle between the spin 
direction and the x, y axes, while in B the elongation of 
the negative elliptical peaks gives the spin direction and 
in C it is the lobes of the 'butterfly' which give the spin 
direction. (If the spins had been inclined to the basal 
plane then all peaks would also be elongated in the 
z-axis direction. This information remains after overlap 
and therefore any inclination to the basal plane is in 
principle detectable.) Consideration shows that it is the 
configurational symmetry of the magnetic structure 
which controls the information lost, as it is configura- 
tional symmetry which governs whether all of the over- 
lapped peaks at any point are of the same type, while 
the domain types are governed by the symmetry of the 
chemical point group which is from a crystal system 
at least as high as that of the configurational group. In 
the example chosen information is lost concerning the 
absolute orientations of the spin directions and the 
x, y axes when the configurational symmetry is 
tetragonal. 

A similar but more complex real example is found in 
the proposed models for the magnetic structure of 
Mnl.gCr0.1Sb from the single-crystal investigation by 
Austin, Adelson & Cloud (1963). These are shown in 
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Fig. 2 with their associated configurational symmetry 
and Patterson distributions. As stated by Austin et al. 
these two structures are indistinguishable by unpola- 
rized-neutron diffraction, but it is interesting to note 
that this is true only after domain averaging. The two 
models do not therefore form a homometric Patterson 
pair in the true sense. 

Using the results from Appendix 1 a table (Table 1) 
can be drawn up to indicate the parameters which may 
be determined from different configurational symme- 
tries. 

3. Powder  diffraction data 

The above discussion may with very little alteration be 
applied to powder diffraction data. In this case the 
'domain'  problem can still be relevant if the domain 
size is less than the crystallite size, and in any case, since 
the crystallites are assumed to adopt all possible orien- 
tations in the powder the 'domains'  are effectively pres- 
ent even if each crystallite is a single domain. The super- 
posed-Patterson-distribution approach can again be 
used and shows that when the model has cubic con- 
figurational symmetry it is possible only to determine 

Table 1. Parameters which may be determined 
from models with different configurational 

symmetries 

Configuration 
symmetry of model 

Cubic 

Tetragonal 
Hexagonal 
Trigonal 

Orthorhombic 
Monoclinic 
Triclinic 

Parameters which may be deteimined 

Magnitudes of spins and relative angles 
between spins 

Magnitudes of spins and relative angles 
between them. Angles between spin 
directions and principal axis. 

All parameters 

the magnitudes and relative angles between the spin 
directions from a powder pattern. No information can 
be gained on the angle between any spin direction and 
a crystallographic direction. In the unaxial systems the 
additional information of the angles between spin di- 
rections and the principal axis may be evaluated, while 
in the orthorhombic, monoclinic and triclinic systems 
it is theoretically possible to determine all parameters 
from the powder pattern. 
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Fig. 1. (a) The spin arrangement, (b) configurational symmetry (c), single-domain Patterson function and (d) multidomain Patterson 
function for a hypothetical structure with chemical space group P4 and magnetic space groups P2 (A), P4(B) and P2a2(C). 
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This agrees with the conclusion reached by Shirane 
(1959) who considered the special case of powder pat- 
terns of materials with a single spin axis. (His treatment 
concerned the averaging of overlapped intensities in 
reciprocal space.) It is interesting to consider the real 
space averaging of Patterson functions for the case of 
the MnO structure type, an example also considered by 
Shirane. The structure type proposed by Shull, Strauser 

& Wollan (1951) is shown in Fig. 3(a). Also shown is an 
alternative structure type suggested by Li (1955) which 
gives an intensity distribution independent of spin di- 
rection and the same as the Shull model with (100) 
spin direction. The configurational symmetry of the two 
models is shown in Fig. 3(b). The Shull model has trig- 
onal configurational symmetry R3 while the Li model 
has cubic configurational symmetry F23. No informa- 
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Fig. 2. (a) The spin arrangement, (b) configurational symmetry, (c) single-domain Patterson function and (d) mult idomain 
Patterson function of alternative models for the magnetic structure of Mnl.gCr0.~Sb. (d) is identical for structures A and B. 
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tion about the spin direction can therefore be obtained 
from the Li model, while on the Shull model the inten- 
sity distribution will be a function of the angle between 
the spin direction and the configurational triad. 

The Patterson functions for single domains are given 
in Fig. 3(c). The ellipsoids have their major axes parallel 
to the spin direction. Averaging over the domains which 
have spin directions related by the indicated triad gives 
Patterson functions shown in Fig. 3(d). These are the 
'S ' - type domains described by Roth (1960). The over- 
lapped ellipsoid elongation (or contraction) is now para- 
llel to this triad. For an original spin inclination of 
54 ° 44' to the configurational triad the peaks are sphe- 
rically symmetric. Averaging must also be performed 
over the 'T '  domain types, which have a different 
cubic triad as configurational axis. For the Li model 
this gives spherical peaks whatever the original spin 
direction, while for the Shull model the result is depen- 
dent on the original spin direction. Fig. 4 shows the 
Patterson peak distribution for the Shull model when 
the spin directions is (a) in a {111} plane, (b) at an 
angle of 54044 ' to (111), (c) in a (111) direction. (Fig. 
4(b) corresponds to any spin direction in the case of the 
Li model.) The differences in the Patterson distribu- 
tions are small and involve only changes of the 'butter- 
fly' features as the angle between the spin direction and 
the triad alters. This explains why the different models 
give very similar powder diffraction intensities. 

4.1. Symmetry of the Patterson function for a 
single-domain single crystal 

The space group of the Patterson distribution (vector 
set) calculated from unpolarized-neutron diffraction in- 
tensities from a single-domain single crystal is related 

(a) (b) (c) 

Fig. 4. Total domain-averaged Patterson distribution for the 
Shull model for MnO when the spin direction is (a) in a {111 } 
plane (b) at an angle of 54°44 ' to O l1>, (c) in a (111) 
direction. 

to the magnetic space group (fundamental set) of the 
spin structure in a way very similar to that described by 
Buerger (1950) for the chemical space groups. As Buer- 
ger showed, there are 24 'chemical ' vector sets derived 
from the space groups of the 230 fundamental sets by 
substituting at the lattice points of vector space the 
translation-free residue of each generating element in 
the fundamental set, completing the group by forming 
the products of the operations of these elements with 
the lattice. A further requirement is that the vector 
space group should contain a centre of symmetry if one 
is not already present in the fundamental group. 

This is still true of the 55 vector sets which can be 
derived from the 1421 magnetic space groups which 
may be used to represent ordered magnetic structures. 
There are, however, two additional requirements relat- 
ing to operations involving time inversion. These are: 

(i) A lattice translation of the fundamental set which 
involves time inversion becomes a black/white transla- 
tion in the vector set. 22 of the 36 magnetic Bravais 
lattices contain time-inversion operators. 

I 
v 

I • 

! 

I i 

t 
A 8A--.2A 

K'. I A  
4"Hi 

IN  \ IB / h 
I A \   \ff,AI 
8_ A \  ',4 

A - - B  -'-m~A 

A J 1 " B ' f  A 

I 8 \  A\I/,A I 
B A B /  I 

I \ I@ A 

(a) (b) (c) (d) 

Fig. 3. The magnetic structure proposed by Shull (A) and by Li (B) for MnO. (a) illustrates the spin arrangement, (b) the con- 
figurational symmetry, (c) the single-domain Patterson function and (d) the Patterson distribution after averaging over 'S'  
domains. 



458 I N F O R M A T I O N  ON O R D E R E D  M A G N E T I C  S T R U C T U R E S  

(ii) The symmetry elements at the lattice points of 
the vector set must not only be translation-free but time- 
inversion-free residues of the generating elements in the 
fundamental set, 

i.e. m' a' b' c' n' d'  ]" 2'2~ 3' 4'4'414;43 6'6'616~6~646~ 
becomes ~ . . . . . . . . .  ~ - '  

m a b  c n  d-1 2 3 4 6. 

The extended form of the theorem of Buerger is there- 
fore: ' If  the fundamental set contains a given symmetry 
element, the vector set contains the parallel, translation- 
free and time-inversion-free residue of that symmetry 
element through the origin. Lattice translations in- 
volving time inversion in the fundamental set become 
black/white translations in the vector set. This will of 
course still apply to chemical space groups where time 
inversion is trivial. 

A list of the space groups of the 55 Patterson vector 

sets which correspond to the fundamental sets of the 
1421 magnetic space groups is given in Table 2. In 
Table 3 the magnetic space groups of the monoclinic 
system are listed with their corresponding vector-set 
space groups as an illustration of the way in which the 
vector-set groups are formed. 

A diagrammatic example of the application of this 
theorem is given in Fig. 5, where the magnetic space 
group Pn'm'a is illustrated with its effects on the three 
spin components of an atom in the general equivalent 
position 8(d). This is the magnetic space group of 
HoFeO3 (Koehler, Wollan & Wilkinson, 1960) and is 
used by Atoji (1965) as an example of his graphical rep- 
resentation of magnetic space groups. The Atoji con- 
ventions have been adopted in depicting the symmetry 
operators in Fig. 5(d). The Patterson distribution is also 
illustrated in Fig. 5(e). The poles on the sterograms which 
have been drawn at positions corresponding to Patter- 
son peaks for position 8(d) represent the elongation 

Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 

Table 2. The 55 vector sets derived from the 1421 magnetic space groups 

Pi, P2sT. 

P2/m, Pz,2/m, P2b2/m, Pc2/m, C2/m, C2~2/m, Cp2/m. 

Pmmm, P2,mmm, Pcmmm, Pvmmm, Cmmm, C2,mmm, Cemmm, Clmmm, Fmmm, Fcmrnm, Immm, 1pmmm 

P4/m, P2c4/m, P,+b.,-b4/m, Pj4/m, I4/m, Ip4/m, P4/mmm, P2c4/mmm, P,+b.,-b4/mmm, Pl4/mmrn, 14/mmm 
le4/mmm. 

P3, P2~3, R3, RR3, P31m, Pz~31m, R3m, RR3m. 

P6/m, Pz~6/m, P6/mmm, P2~6/mmm. 

Pm3, Pvm3, Fm3, Im3, Ipm3, Pm3m, Pvm3m, Fm3m, Im3m, Ipm3m. 

Table 3. Space groups of  the fundamental sets for the monoclinic system and their corresponding vector sets 

Space group of fundamental set 
P2, P2', P21, P2~, 
Pm, Pm', Pc, Pc', 
P2/m, P2"/m, P2/m', P2"/m', P21/m, P2'a/m, P21/m', P2'x/m', P2/c, P2"/c, P2/c', P2'/c' 
P2dc, P2~/c, P21/c', P2'~/c'. 

Space group of vector set 

P2/m 

P2.2, P2.2t 
e2am, e2cm', e2aC, 
P202/m, Pzc2/m', Pzo2t/m, P2c2t/m', P2a2/C, P2o21/c 

Pzb2, P262', 
P2bm, P2bc, 
P2b2/m, P2b2/m, Pzb2/c, P2b2"]c. 

Pc2 
Pcm, Pcc 
Pc2/m, Pc2/C. 

C2, C2" 
Cm, Cm', Cc, Cc'. 
C2/m, C2"/m, C2/m', C2"/m,' C2/c, C2"/c, C2/c', C2"/c'. 

C2c2, 
C~cm, C2cm', 
C2~2/m, C2c2/m'. 

P2.2/m 

P2b2/m 

Pc2/m 

C2/m 

C2c2/m 

Cp2, Ce2", Cern, Cem', C~,:, Ce2/m, Cp2"/m, Ce2/m', Cp2"/m', Cv2/C, Cp2'/c. Cp2/m 
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directions of overlapped peaks. The symmetry of this 
distribution is Pmmm [Fig. 5(f)]. 

The black/white lattice tranlation is illustrated in 
Fig. 1 where the monoclinic magnetic space group 
P2a2 has a Patterson function with space group Pz.2/m. 

4.2. Symmetry of the Patterson distribution for a 
multi-domain single crystal 

The spin directions of the magnetic domains which 
exist in a single crystal are related by the parent point 
group of the chemical space group. The Patterson dis- 
tribution for the superposed domains may be generat- 
ed by operating the point-group symmetry elements on 
the Patterson distribution for a single domain. This is 
illustrated by the structure C in Fig. 1 which has a 
single-domain monoclinic Patterson symmetry of 
P2,,2/m and a chemical point group 4, producing a do- 
main-averaged Patterson function with tetragonal 
space group P,+b,a-b4/m. In the case of MnO the 
domain-averaged Patterson function has space group 
PFm3m and is generated by the chemical point group 
m3m operating on the monoclinic single-domain Patter- 
son function with space group C2c2/m. 

5. Discussion 

The real value of the Patterson function must lie in the 
assistance which it gives in formulating a model from 

diffraction data for the magnetic structure of a partic- 
ular material. The domain-averaging problem often re- 
duces the information available, but in some cases the 
Patterson distributions from different domains may be 
identical when superposed. This is the case for vivianite 
[F%(PO4)2.8H20] which has been shown by Forsyth, 
Johnson & Wilkinson (1970) to have a monoclinic anti- 
ferromagnetic structure with spin directions in the plane 
perpendicular to the diad axis. The chemical point 
group is 2/m and the spin directions in the two domains 
are therefore at 180 ° to each other, making the super- 
position of the two Patterson distributions trivial. 

In general, however, this will not be so and it may be 
difficult to disentangle the symmetry of an individual 
domain from the averaged distribution. There are, how- 
ever, features which often appear in domain-averaged 
distributions (especially in antiferromagnets) which can 
give a clue that several domains are present. For exam- 
ple, in the case of structure C of Fig. l(c) the single- 
domain Patterson P~2/m produces the tetragonal group 
P, +b. ,-o4/m[Fig. 1 (d)] when domain-averaged, but the 
'butterfly' features which appear in Fig. l(d) often in- 
dicate domain overlap. Here they are produced by the 
overlap of equal positive and negative elliptical peaks 
with their major axes perpendicular. They also occur 
in the domain-averaged MnO Patterson maps for simi- 
lar reasons and are often found where domain averag- 
ing has taken place. Their appearance is not conclusive 
evidence of overlap as a similar feature is produced in a 
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Fig. 5. Effect of space group Pn'm'a on (a) x, (b) y and (c) z spin components of atoms in general equivalent position 8(d). (d) 
shows the magnetic-space-group symmetry operators while (e) contains stereograms drawn at positions of Patterson peaks 
(with poles indicating the elongation directions) which overlap at that point. (f) is the symmetry of (e). 
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single domain when two spins are at right angles [Fig. 
l(c), structure B]. 

A second feature which can indicate domain overlap 
is a precise integral relationship between the magni- 
tudes of peaks in the distribution when this is not de- 
manded by the existing symmetry elements. An example 
of this is found in the magnetic structures of MnzP 
(Yessik, 1968) and Mns Si3 (Lander, Brown & Forsyth, 
1967), where the Patterson distributions produced by 
Fourier transformation of the observed intensity data 
are clearly hexagonal with the chemical a hexagonal axis 
doubled. The structures are ant,ferromagnetic as there 
are equal amounts of positive and negative Patterson 
density but this is curiously arranged. The origin peak 
is of magnitude 3 while at positions (a, 0,0), (0, a, 0) and 
(a,a, 0) there are equal peaks each of magnitude precisely 
- 1. On detailed examination it becomes clear that the 
magnetic domains are in fact orthorhombic and that this 
relationship has arisen because of the overlap of two 
peaks of magnitude - 1  with one of +1. This type of 
effect does not conclusively indicate domain overlap, 
however, as it can occur in a single domain [Fig. l(c), 
structure C]. 

In addition to its predictive value for a particular 
magnetic structure model the Patterson function is 
more widely useful as it allows a discussion of the in- 
formation available in neutron-diffraction experiments 
in general. In this paper, for example, it has been used 
to extend the conclusions of Shirane on the information 
available from powder diffraction data. 

A P P E N D I X  1 

The expression for the Patterson peak computed from 
three dimensional data is 

O ' ( u " ' +  x ) = A ( l x l ) S "  s"+fz(Ixl)  ( sin. x) ( sn .  2~) 

and the information on the elongation of this peak 
relative to the reference axes is contained in the pro- 
duct ( S ' .  :~) (S". z~). Consider a material with tetrag- 
onal configurational symmetry. There will be in the 
simplest case four domain types for this material and 
when thePatterson distributions for these domains are 
superposed there will be at the position u,,,, four overlap- 
ped peaks which arise from pairs of spins with com- 
ponents 

and 

( S i n  . x )  ( S n  . ~'K) 

1 m = ~{(S~ x~ + Si"x2 + S'~'x2) (STx~ + S'Ix2 + S~x3) 
+ (S'~"x~ - S'l'x2+S'1%) (S~x~ - S7x2 + S'~x3) 
+ ( -  S "~x~- S ~'x2 + S'3"x3) ( -  S ~x~ - S ~x2 + S'~x3) 
+ ( - Si"x~ + Si"x2 + S'~%) ( -  S'~xl + S'Ix2 + S'~x3)} 
__ J t ~m~n  _a_ ~,n~,,'~ (X 2 + . . 2x  - -  c ' m  c ' n . . 2  
- -  2 - k ° l  ~"'1 ~ ° 2  " J21  A 2 )  -1- ~')3 ") 3A3  
__ J _ / q ' m c n  cmcnh q 'mcnv2 -2t~, l~,~+ (1 -x~ )+  ~ ' 2  ~'J2/ ' - ' 3  ' J 3 " a 3  • 

, ' .  

a'(u~" + x) =A(Ixl)S m . s" 
1 ,n '! g'l !1 + f2(lxl){x(SaSa + S2S2) (1-x~)  + Sa" S3x3}" 2 

which depends not on xl and Xz but only x3. It is there- 
fore not possible to determine the angle which the spins 
S ' ,  S" make with the x~ and x2 axes. 

Similar analyses may be made of the other systems 
with the following results. 

Trigonal and hexagonal  configurational symmetries  

Average taken over three domains with triad or hexad 
parallel to x3 axis. Pairs of spin components are 

Sg', Sg', S~' ½(- Si"+ ]/3S~'), -½(I'3ST + sg'), sg" 

" S~ S'/, S~., S] ½(- S7 + ] / 3S2), ' / " -~(1 3sx + s g ,  

- ~to~"¢" + ]/3S~'), ½([/3S~' - Si"), S~' 

- ½ ( s f  + / 3 s 9 ,  ½(I/3sT-s~),  sg 

a ' (u  ~" + x) =A(Ixl)S m . S" 
m n q 'n ,  q 'n  ,~.2) +f2(lxl){½(S'~'S7 + + 3282) (1-x~) + ~,3 ~,3~3j • 

Orthorhombic configurational symmetry 

Average taken over four domains with spin compo- 
nents 

$7', si", s~" si", - s ~ ' ,  sg' 
$7, s~, sg sT, - s~, sg 

- $7', - s~', sg' - $7', Si", s~" 
- $ 7 ,  - s ~ ,  s~ - s ~ ,  SL s~ 

O'(um" + x)--A(Ixl)S m . s" 
m n 2 +A(Ixl){S~ S ~ x l  -.}- 32mS2A, 2,,..2 + 33mS3X3 2 

s?,  s~', s~  - s " L - s ~ ,  s'~" 
sT, s~, s'~ - s T , - s ~ ,  s~ 

s ' L - s i " ,  s~  - s ' L  si", sg' 
s ~ , - s T ,  s~ - s ' I ,  s7, sg 

relative to orthogonal reference axes 1, 2 and 3 with the 
tetrad parallel to axis 3. 

The average of these four peaks is therefore 

Q'(um" + x)=A(IxJ)S = . s " + A ( x l ) ( s  m i ~) (s"-7 ~) 

Monocl inic  configurational symmetry 

Average taken over two domains with spin components 

s~ ~, s~', s~' - s ? ,  s~", - s ~ '  

s L  s~, s~ - s L  s L  - s ~  

and diad axis parallel to axis 2. 

O'(u"" + x) - -A(Ix l )S" ,  s " + A (  Ixl){Slm Six1" 2 
_.[_ m n 2 = n 2 rn n 

$ 2  $ 2 x 2  + S ~ S ~ ) x l x 3 }  $3  S 3 x  3 -{- ( S  2 S l  3 t- 
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Cubic configurational symmetry 

Average taken over twelve domains by consideration 
of four trigonal axes (each with three domains) in cubic 
(111) directions. 

Ot(U mn -t- x ) : S  rn • S"{A(Ixl)  +½A(Ixl )}  • 
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Prediction of Partially Recorded Reflexions on Screenless Precession Photographs 
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Three-dimensionally valid equations for the prediction of partially recorded reflexions on screenless 
precession photographs are proposed. The equations are based on a discussion of the mosaic spread of 
the crystal. Applications to the collection of 5 A resolution data from hexon, a surface protein in the 
shell of adenovirus [Franklin, R. M., Harrison, S. C., Pettersson, U., Philipson, L., Br/ind6n, C. J. & 
Werner, P.-E. (1971). CoM Spring Harbor Symposia on Quantitative Biology. Vol. XXXVI, pp. 503-510] 
are given. 

Introduction 

The theory of screenless precession photography has 
recently been given by Xuong & Freer (1971). The 
present paper deals with the problem of partially 
recorded reflexions on screenless precession photo- 
graphs. 

The screenless precession method provides an in- 
creased efficiency of data collection over normal 
layer-line precession photography. The exposure time 
is decreased by an order of magnitude because of the 
smaller precession angle required. A reduced exposure 
time is particularly important for crystals with large 
unit cells and crystals that suffer radiation damage. 
We have therefore adopted the screenless precession 
method for data collection from hexon from adeno- 
virus type 2. The unit cell under investigation is cubic 
with a cell edge of 149.9 A. 

Fig. 1 is a section through the reciprocal lattice that 
shows, within the shaded area, the region recorded on 
a screenless precession photograph. The ~mi, and ~max 
must be calculated for each ~ in order to determine 
the recordable portion of the corresponding reciprocal- 
lattice plane. It was pointed out by Xuong & Freer 

(1971) that a complete reflexion cannot be recorded for 
reciprocal lattice points that lie too near the cut-off 
limits ~mi, and ~m=. They also suggest that the 
partially recorded reflexions are those for which c, as 
given by 

c =f2l~ma~- ~1 (1) 
or 

c=f),l~min-- ~l, (2) 

is smaller than the film spot size for this reflexion. In 
equations (1) and ( 2 ) f  denotes the crystal-to-film dis- 
tance and 2 the wavelength of the radiation used. It is 
obvious from Fig. 1 however, that the detection of 
partially recorded reflexions is a three-dimensional 
problem. Thus the z direction must also be taken into 
account. When the data collection from hexon started 
we were not aware of this fact. However, the problem 
was discussed with colleagues, at the Protein Crys- 
tallography Workshop in Alpbach in 1972, and an 
extension of the equations (1) and (2) to the ~ direction 
led to the erroneous conclusion (see below) that for 
precession angles around 1 ° almost all reflexions with 
d spacings above 10 A would be partially recorded. 

A G 28A - 10" 


